Author Archives: Nick

Science at the Edge of Human Scale: the Very Large Array

While planning our trip, Lizzie and I realized that we would have an awkward amount of extra time between our visits to the Superconducting Super Collider and Los Alamos. Though the drive from east Texas to New Mexico is formidable enough to require a night’s stay along the way, it has such high speed limits and so few turns that the miles tick by more quickly than just about anywhere else in the country. But since the July 4th weekend meant that we had to be at Los Alamos by the 2nd – unless they’re in the middle of a particularly intensive run, physicists get the same holiday weekends as the rest of us – there was only about a half-day to spare.

This wasn’t enough time to accommodate our original idea of camping at White Sands and driving by the Trinity Test Site (which is closed to the public all but two days a year anyway). But it turned out to be just the right amount of time to visit the accurately if unimaginatively named Very Large Array (VLA), located about 50 miles west of Socorro, New Mexico.

The heart of the Very Large Array

The heart of the Very Large Array

A wider view of the heart of the VLA. As the view extends outward, the scale starts to become apparent.

A wider view of the heart of the VLA. As the view extends outward, the scale starts to become apparent.

Click through to view an enormous panorama of the VLA. Even though the Array was not at its most outspread position, this enormous image still does not capture the whole thing.

Click through to view an enormous panorama of the VLA. Even though the Array was not at its most outspread position, this enormous image still does not capture the whole thing.

Nestled on a vast, mountain-ringed, 7000-foot plateau in the central New Mexican desert, the VLA is safe from the interfering radio waves of just about anything that doesn’t come from space. Though it is comprised of 27 separate dishes, the observatory operates as a unified whole: by interferometrically combining the data from each dish, the array can simulate the results of a single radio telescope up to 22 miles wide.

Continue reading

Argonne: The Future’s Past

Like Oak Ridge, Argonne National Laboratory serves as a living witness to the continuity of American 20th century physics: after its first incarnation as part of the Manhattan Project’s Metallurgical Laboratory (the group that first successfully isolated Plutonium), it was the first research site to be designated a National Laboratory after the war. In the sixty-five years between some of the world’s first nuclear reactor research and today’s most cutting-edge accelerator development, there was hardly a science-and-technology subject in which Argonne didn’t have a hand.

This history is written all over the lab, even as it is already carving itself a place in the 21st century:

The beautiful but abandoned Building 330, which housed the 1950s-era Chicago Pile 5 reactor. Argonne was also the second home of Enrico Fermi's Chicago Pile 1, which was moved to the lab from the University of Chicago in 1943 and renamed Chicago Pile 2.

The beautiful but abandoned Building 330, which housed the 1950s-era Chicago Pile 5 reactor. Argonne was also the second home of Enrico Fermi's Chicago Pile 1, which was moved to the lab from the University of Chicago in 1943 and renamed Chicago Pile 2.

In an amazing contrast, old warehouses lodge some of the world's most cutting-edge research.

In an amazing contrast, old warehouses lodge some of the world's most cutting-edge research.

Argonne's obviously much newer Advanced Photon Source, which produces the brightest x-rays in the western hemisphere.

Argonne's obviously much newer Advanced Photon Source, which produces the brightest x-rays in the western hemisphere.

Continue reading

Congrats to the LHC!

Congratulations to the Large Hadron Collider scientists for achieving the first collisions in their mammoth machine! My favorite coverage of the collider’s warmup comes from the Boston Globe’s The Big Picture, which recently featured a couple of dozen screen-sized images of the LHC: check it out.

-Nick

The Battleship in the Soudan Mine: MINOS Part II

The MINOS Far Detector, buried 2,341 feet beneath the earth in the Soudan Mine in northern Minnesota. A mural by Joseph Giannetti about the power of science is painted on the right wall.

The MINOS Far Detector, buried 2,341 feet beneath the earth in the Soudan Mine in northern Minnesota. A mural by Joseph Giannetti about the power of science is painted on the right wall.

After visiting the point of origin of the MINOS neutrinos on our Fermilab tour at the beginning of the trip, it seemed a fitting conclusion to stop by their destination as my own road neared its end. So with Lizzie in Mexico, I made the Summer’s last science-related stop at the Soudan Mine with my friend Sam on our way back across the country.

As discussed in our previous post, the MINOS experiment uses a beam of neutrinos called NuMI (Neutrinos at the Main Injector) produced by decaying protons from Fermilab’s Main Injector. These neutrinos travel 450 miles through the earth to the 2341-foot deep Soudan Mine in northeast Minnesota (and beyond, of course), where physicists can isolate the Far Detector from just about any interference. Despite the fact that the detector is shaped like an enormous stop sign, only a tiny number of neutrinos obey the symbolic request: of all the trillions of neutrinos produced by NuMI, the Far Detector sees only about one a day.

Courtesy of Fermilab.

Courtesy of Fermilab.

Continue reading

Oak Ridge: Where Cyclotrons Still Roam

Lizzie staring into the exposed belly of the Recoil Mass Spectrometer

Lizzie staring into the exposed belly of the Recoil Mass Spectrometer

Initially, we didn’t think we’d have time to visit Oak Ridge – our planned route took us on a comparatively leisurely drive from New York to Chicago with a stop in Pittsburgh for a night. But as the recommendations began to pile up, first from John Haggerty and the other physicists at Brookhaven, then Cindy Kelly of the Atomic Heritage Foundation, we realized that the additional visit to Tennessee would probably be worth it.

Continue reading

Nuclear Tourism

The only stop on our tour that didn’t directly involve physics research was at the University of Chicago. Today, a statue and plaques sit above the exact spot where Enrico Fermi initiated the first controlled nuclear reaction in 1942 by pushing chunks of uranium into a pile of graphite – essentially the same process used by the Graphite Reactor at Oak Ridge (which you can read about in the Old Headers section or in our upcoming post about the Lab).

While the plaques speak of the “tremendous scientific potential” tapped for the first time by Fermi’s experiment, Henry Moore’s sculpture more somberly combines the forms of a mushroom cloud and a human skull. By the mid 1960s, when the sculpture was commissioned, the terrible power of nuclear reactions had apparently become all too clear.

The National Synchrotron Light Source

Brookhaven’s National Synchrotron Light Source, we would discover, is just that — a light source. And despite the differences in scale and the methods of production, it isn’t so different from the studio lights used by photographers. In each case, the way to get the best image is to shine a really bright light on the subject and take a picture of it. Indeed, the only respect in which the light source’s name can be misleading is that it does not confine itself to the visible light spectrum, but uses everything between infrared and x-rays.

A view of the workspaces surrounding the smaller ring at Brookhavens National Synchrotron Light Source

A view of the workspaces surrounding the smaller ring at Brookhaven's National Synchrotron Light Source

Continue reading